
FUG Game Engine
“You can make a game or a game engine”

- Albert Einstein

So I heard you want to make a game engine
● Why (seriously)?

○ You want to make a cool game
■ Existing free, popular alternatives (Unreal Engine, Unity)
■ Active supporting community
■ Bad Idea

○ You want to make a small game
■ No need for full scale engine
■ Chance to learn
■ Chance to make mistakes
■ Possibly a good idea

○ You want to make a game engine
■ Chance to learn A LOT
■ Chance to question one’s sanity
■ A questionable idea

FUG
● What FUG is

○ An experiment in requirements of a “real” game engine
○ A way to learn (the hard way)
○ Something to #include into one’s portfolio
○ Something to work on with friends
○ An obsession

● What FUG isn’t
○ A game engine
○ A project
○ Documented

Requirements for a game engine
● Main data structure for game objects
● Communication (user input, inter-object messaging)
● Resource management
● Rendering

Journey from everyone’s first mistakes to this day

Main data structure, before
● What everyone thinks is the greatest

thing ever after their first C++ course
● Scene graphs

○ Organize objects using a node hierarchy

● Polymorphic objects
○ Inherit and reuse object properties

● Polymorphic objects in scene graphs
○ Could be useful in small games / restricted cases
○ Terrible idea in general

Let’s talk about performance
● It’s all about memory

○ RAM is slow

● So how we get anything done?
○ Caching

■ Smaller quantities of faster
memory

■ Fetch bigger chunks and
store them in cache

● Crucial to make use
of this chunk

Accessing Data
● Trees

○ Sometimes great, usually terrible
■ Traversing pointers leads to cache misses

○ Scene graphs and polymorphic objects are both tree structures

● C++ peculiarities
○ std::vector<BaseObject*>

■ Every object is new-allocated and located randomly in memory
■ Have mercy on your hardware, don’t do this

OOP and code maintainability
● Inheritance

○ Sounds great at first
○ Inherit properties you don’t need or make almost identical duplicate
○ Leads to tightly coupled code

■ Make a change somewhere, everything falls apart
■ Absolute horror to maintain in the long run (ask Java programmers)

● OOP ties data and functionality together
○ Again, tightly coupled

● Modularity
○ Key to maintainable code

Main data structure, now
● Entity-Component system

○ Data and functionality decoupled
■ Maintainability

○ Entities are collections of components
■ Use only what you need

○ Systems access and modify combinations
of components

○ Components accessed sequentially,
number of cache misses minimized

● Examples of components:
○ PositionComponent
○ PhysicsComponent
○ ModelComponent

● Examples of systems:
○ PhysicsSystem

■ Uses PhysicsComp, PositionComp
○ RendererSystem

■ Uses PositionComp, ModelComp

Communication, then
● Observer pattern

○ Directly modify other object once required
■ Complex data access patterns, bad

○ Depends on properties of both objects
■ Tightly coupled code, again, bad

Communication, now
● Events and Event Manager

○ Distribute and receive events in centralized manner
■ Event Manager acts as a “post office”

○ React to events once relevant (or don’t)
■ Completely decoupled from event sender
■ Coherent data access

Resource management, then
● What’s a resource anyway?

○ Anything you need only a single copy of
○ Loaded / created in run-time
○ 3D meshes, textures, shaders etc..

● Just load everything you need at the moment
○ Loading screens

Resource management, now(soon[maybe])
● Case Skyrim

○ What to keep in memory, what to load?

● Hierarchical resources
○ Unload only parts of a resource
○ Loading dependencies

● Multiple ways of initializing a resource
○ e.g., texture can be loaded from file or procedurally generated

● Keeping track of what’s in use
○ Smart pointers with reference counting

Rendering FUG

Goals (tbc)
● Try cool stuff

○ First time doing most of this

● Generic interfaces
○ Avoid slightly differing copies of e.g. resources
○ Avoid “hard coding” where possible -> map things at runtime

● Optimize later™

Story so far

What we have
● Generic types for common resources
● Physically based materials, UE4-style
● Deferred shading

○ directional lights at least

What we have What would be nice
● Generic types for common resources
● Physically based materials, UE4-style
● Deferred shading

○ directional lights at least

● More types of lights
● Shadows
● Reflections
● Ambient Occlusion
● Skinning
● Subsurface scattering
● Transparency
● Level Of Detail -switching
● Occlusion culling
● GPU particle engine
● Post processing

○ Bloom
○ Depth Of Field
○ Gamma Correction (!)

● Concurrent rendering
● [insert other cool stuff here]

Newbie lessons
● Plan ahead

○ Rewriting is part of the journey
○ …but changing interfaces is not fun

● Verify the math (by hand)
○ Fun fact: some reference material or library

functions might flip your z-axis

Resources
CS-C3100 Computer Graphics

Möller et. al. : Real-Time Rendering
- almost a decade old now but basics still apply

Rendering tutorials (modern OpenGL)
https://learnopengl.com, http://ogldev.atspace.co.uk

https://learnopengl.com
http://ogldev.atspace.co.uk

